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Decay of metastable phases in a model for the catalytic oxidation of CO
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We study by kinetic Monte Carlo simulations the dynamic behavior of a Ziff-Gulari-Barshad model with CO
desorption for the reaction CO+OCO, on a catalytic surface. Finite-size scaling analysis of the fluctuations
and the fourth-order order-parameter cumulant show that below a critical CO desorption rate, the model
exhibits a nonequilibrium first-order phase transition between low and high CO coverage phases. We calculate
several points on the coexistence curve. We also measure the metastable lifetimes associated with the transition
from the low CO coverage phase to the high CO coverage phase, and vice versa. Our results indicate that the
transition process follows a mechanism very similar to the decay of metastable phases associagdiwith
librium first-order phase transitions and can be described by the classic Kolmogorov-Johnson-Mehl-Avrami
theory of phase transformation by nucleation and growth. In the present case, the desorption parameter plays
the role of temperature, and the distance to the coexistence curve plays the role of an external field or
supersaturation. We identify two distinct regimes, depending on whether the system is far from or close to the
coexistence curve, in which the statistical properties and the system-size dependence of the lifetimes are
different, corresponding to multidroplet or single-droplet decay, respectively. The crossover between the two
regimes approaches the coexistence curve logarithmically with system size, analogous to the behavior of the
crossover between multidroplet and single-droplet metastable decay near an equilibrium first-order phase
transition.
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[. INTRODUCTION controlled by a single parameter, which represents the

The study of phase transitions and critical phenomena i robability that the next molecule arriving at the surface is
yorp ¥ O, i.e., it is proportional to the partial pressure of CO. The

ESSIZ?uItlrlglZ?Jcisysé?rgjr:‘sac?esfeszaig:)ﬁf %f;;éntﬁ;?;&?agg' odel exhibits two kinetic phase transitions, a continuous
' y ne aty=y,; and a discontinuous one gty,, wherey,

qonsiderable attentioﬁl].. These models not only gxhibiF <y,. Wheny<y,, all the sites become occupied by oxygen
rich and complex behavior, but they can also explain a Wldethe so-called oxg/gen-poisoned stateylfy,, all the sites '
range of experimental results associated with catalysis ang ; 2

could be very useful for designing more efficient processes ecome occupied by CO molecules, the so-called CO-
The potential applications of improved catalytic reactions aré) o!soned state. Real systems do not POSSEss an oxygen-
a powerful reason to pursue this line of resed@h Unlike pmsoned state because oxygen does not impede the adsorp-

. ’ .. tion of CO. However, transitions between states of low and
the decay of metastable phases near first-order equilibriu

hase transitions, the decay of metastable phases near nopd! CO COVerageico (where o is the fraction of surface
phase t ’ =cay ot I P : ftes occupied by CDhave been observed experimentally
equilibrium phase transitions still lacks a well-establishe

theoretical framework 4,5]. At low temperatures, ag increases, there is a discon-
The Ziff. Gulari an.d BarshadZGB) model is a lattice- tinuous increase Mo, accompanied by a discontinuous
" P . . _drop in the CQ production rate. Above a critical temperature

gas adsorption-reaction model that describes some kinet

X o . fhe discontinuities disa ear, and the oduction de-
aspects of the catalytic oxidation of carbon monoxide on &, ces continuously. 'IPrﬁs type of behzg\‘/iiror can be repro-
crystal surfac¢3]. The ZGB model assumes that the reactlonduced by modifying the ZGB model to include a CO desorp-

EzawﬁarFH?nggglv%Q da fgé?scse proceeds according to thetion rate k [6—9], a model we for brevity will call the ZGB-k
9 P ' model [10]. For this model, there is a distinction between

CO(g) + S— CO(a), high and low CO-coverage phases only kdselow a critical
value k;, while abovek; the CO coverage varies smoothly
0,+25— 20(a), with y. Thus, the transition valug, becomes a function d,

corresponding to a coexistence cugék) that terminates at

. the critical pointy,(k;) [11,12. The ZGB-k model does not
CO@ +0(a) — CO9 +2S, have a totally poisoned CO state, and hysteresis is observed

where S is an empty site on the surface, é&gcand(a) refer  in 6o asy is varied close tg,(k) [10,11. This hysteresis is

to the gas and adsorbed phase, respectively. The processaissociated with well-defined metastable phases of the model.
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The main aim of this paper is to understand the dynamical
response of the model near the discontinuous transition. Wk
present an extensive finite-size scaling analysis of results
from kinetic Monte Carlo simulations that indicates, more
conclusively than previous studies, that the system undergoe
a first-order nonequilibrium phase transition along a coexist-
ence curve that terminates at a critical point. We calculate

lifetimes of the metastable phases associated with the decay
from the low (high) CO-coverage phase to the higlow)
coverage phase. We find that the statistics of the metastablgX"
lifetimes are well described by the Kolmogorov-Johnson-
Mehl-Avrami (KJIMA) [13-15 theory of phase transforma- ics the CO+0- CO, surface reaction following ©adsorp-
tion by nucleation and growth near a first-or@guilibrium  tion. A schematic of this algorithm is shown in Fig. 1. We
phase transition. emphasize that the ZGB model, both with and without CO
The outline of the paper is as follows. In Sec. Il, we desorption, is an intrinsically nonequilibrium model that is
define the model and describe the Monte Carlo simulatioriully defined by these dynamic rules. In contrast to systems
techniques used. In Sec. Ill, we present and discuss the ngonsidered in equilibrium thermodynamics, its properties are
merical results obtained: in Sec. Il A, we show how we notderived from a Hamiltonian. We shall return to this point
calculate the coexistence curve and present a finite-size scan Sec. Il B.
ing analysis of the fluctuations and of the fourth-order cumu-  For our simulations, we assume periodic boundary condi-
lant of the order parameter; in Sec. Ill B, we present thetions. The time unit is one Monte Carlo step per site
measurements of the lifetimes of the metastable states ass®CSS, in which each site, on average, is visited once. For
ciated with the transition and show how their behavior ismeasurements of stationary quantities, the system was al-
described by the KIMA theory. Our conclusions are summalowed to reach stationarity before data were recorded for
rized in Sec. IV. analysis. Averages were taken ovef Ifdependent simula-
tion runs.

FIG. 1. Schematic of the algorithm. See discussion in the

Il. MODEL AND SIMULATION

. S ll. RESULTS
The ZGB model with desorption is simulated on a square

lattice of linear sizeL that represents the catalytic surface. A We use a standard ternary phase diagram to plot the frac-
Monte Carlo simulation generates a sequence of trials: CO dion of sites occupied by CO molecules: the CO coverage,
O, adsorption with probability 1k and CO desorption with  6-¢; the O coveragefy; and the fraction of empty sitegk.
probabilityk. In the case of adsorption, a CO o Molecule  In Fig. 2, we present a contour plot of a histogram based on
is selected with probability and 1-y, respectively{3,11].  the projection of 16 MCSS onto the plane of the phase
These probabilities are the relative impingement rates of

both molecules and are proportional to their partial pressures Empty

The algorithm works in the following way. A siigs selected :

at random. In the case of desorptionj it occupied by CO
the site is vacated and the trial ends, if not the trial also ends
In the case of adsorption, if a CO molecule is selected it can
be adsorbed at the empty sitéf none of its nearest neigh-
bors are occupied by an O atom. Otherwise, one of the oc:
cupied O neighbors is selected at random and removed fron
the surface, leavingand the selected neighbor vacant. This
move simulates the CO+0 CO, surface reaction follow-
ing the adsorption of CO. £molecules can be adsorbed only
if a pair of nearest-neighbor sites are vacant. If the adsorbec
molecule is selected to be,Oa nearest neighbor df j, is
selected at random, and if it is occupied the trial ends. If both
i andj are empty, the trial proceeds, and thg f@olecule is
adsorbed and dissociates into two O atoms. If none of the
remaining neighbors dfis occupied by a CO molecule, one
O atom is located ait, and if none of the neighbors ¢fis
occupied by a CO molecule, then the other O is locatgd at
If any neighbors ofi are occupied by a CO, then one is
selected at random to react with the Q atich that both sites FIG. 2. Contour plot of the projection of §{MCSS of simula-
are vacated. The same reaction happens af #iteny of its  tion onto the ternary phase diagram f6r0.02,y=0.5332, and_
neighbors are filled with a CO molecule. This process mim=_100.

o

031603-2



DECAY OF METASTABLE PHASES IN A MODEL FOR..

P(fco) 2000 . , : |
50 00 L=20 4
40 i =-u =40 i
30 o0 L=60
20 AA [=]00 i
10 1500 |- ‘4 i
0
0
0.530
= | —
0.536 0-0 > 1000

FIG. 3. Order-parameter probability distributid®(6cc), shown
vs y for k=0.03 andL=100. The distribution for the value of
closest to the coexistence value is shown with a bold line.
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diagram. For the chosen parameters and observation time:
the system undergoes several transitions between the low ar
high CO-coverage phases. From the fact that the set of phas
points is nearly parallel to the lin@y/ 6z=1/2, it is evident

that the CO coverage gives more information about the ki-

netic phase transitions thaiy, or 6g.

A. Determination of the coexistence curve

We estimateP(6p), the probability distribution forf,
by recording the number of timé¢ that the coverage fell in
the intervals[0,¢),[€,2¢),...,[1—-€,1] (e=0.01), such that

FIG. 4. The order-parameter fluctuation measxjreshown vsy
for k=0.02 and four system sizes. The dotted lines are guides to the
eye. The values oX; have an error of approximately 5%.

k. A linear fit indicates a power-law divergence wilthsuch

that the maximum value scales ag"™~L% with d’
=1.96+0.02, 1.91+0.05, and 1.58+0.04 fier0.02, 0.03,

ZiN;=N is the total number of MCSS. Then, the probability and 0.04, respectively. A different method to extract the

that .o has a value in the interval(i-1)e,ie) is P;
=N;/Ne, such that

1
f P(6co)dfco= > Pie=1. (1)

0 i

In Fig. 3, we showP(fc) vsy. In the regiongbelow and

abovey,) where the histograms are unimodal, the system

consists of one single phase. For a very narrow rangg of

the histograms are bimodal, indicating two distinct phases. 4
At the coexistence point,(k), the areas under both peaks are

equal[16,17).
We define a measure of the fluctuations gg in an
L XL system in the standard way as

XL = L2~ (bcolb).

1
<¢920>|_ = f

0

2

where
0oP(6c0)dbco. (3

We measureX, as a function ofy for a fixed value ok and
several values df. At a first-order equilibrium phase transi-

power-law exponent, which has some advantage in eliminat-
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tion, the order-parameter fluctuations increase with the sys-

tem size, such that the maximum valueXgf~ LY, whered is
the spatial dimension of the systé¢aiv—20. We will take the
same scaling behavior to indicate reonequilibrium first-
order transition.

In Fig. 4, we showX, vsy for four system sizes &kt
=0.02. For the four values df used,X; displays a clear
peak, which moves and increases in height with increasing

In Fig. 5a), we plot INX"®) vs In(L) for several values of

FIG. 5. (@ Plot of InX") vs In(L) and (b) plot of
IN(XEY X" /In(b) with L=20 vs 1/Irb), both for several values
of k and including all four system sizes{"*is the maximum value
of X, taken from figures similar to Fig. 4. The straight lines are the
best linear fits to the data and givKLmaX~Ld' with (a) d’
=1.96+0.02, 1.91+0.05, and 1.58+0.04; ghgid’ =2.008+0.005,
2.006+0.008, and 1.52+0.04; fok=0.02, 0.03, and 0.04,
respectively.
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ing the effects of a nonsingular background te@s in X,
:f+ng' with f andg constanty is to consider

Xmax
|n{%ax} Inb=d’+O(1/Inb)
xL

with L fixed at a relatively small valuéhere,L=20), andb
> 1. For largeL andb, the correction term is proportional to
f/(glnb), so that the exponent can be estimated by plotting

k., based on Eq(5), very accurate. The fact that different
techniques give different results is an indication of the diffi-
culties associated with locatink in this model, even for
relatively large systems.

A useful tool for detecting phase transitions in simulations
of finite equilibrium systems is the fourth-order reduced cu-
mulant of the order parametgt7,19,2Q. For 6. it takes the

(4)

the left-hand side of Eq4) vs 1/Inb and extrapolating to
1/Inb=0, as in Fig. ®). The resulting estimates am¥

=2.008+0.005, 2.006+0.008, and 1.52+0.04 fo0r0.02,

0.03, and 0.04, respectively.

M4

3_,u§' (6)

UL:]._

where

These results indicate that the system undergoes a first- .
order phase transitiord’ =d=2, at y=y,(k), generating a
coexistence curve that terminates at a critical point 0.03 “”:((gco_wco»n):fo (6co=(bco)"P(bco)dbco
<k.<0.04. A previous estimate based on a study of the frac-
tal dimension of the interface between the two phases gives
0.039<k.<0.04[9]. Another study, which estimatdg(L)
as the value ok where the double-peaked histograms be-
come single-peaked, givdg(L —)=0.040 60[11]. How-
ever, from the known two-peaked shape of the order
parameter distribution at the equilibrium Ising critical point
[21], we believe that this method should yield a slight over-
estimate ok.. Referencél11] also reports preliminary results

(7

is the nth central moment of the CO coverage. The equal-
area bimodal distribution corresponding to coexistence
yields a positive maximum for the cumulant ysflanked on

‘either side by negative minima and approaching zero far
away from the transition. Since the cumulant essentially is a
tool to determine the shape of the order-parameter distribu-
tion, it can also be used for nonequilibrium phase transitions,

on the fourth-order cumulant of the CO coverage that ar

consistent with an Ising-like critical point &.=0.0406.

However, the cumulants were calculated only for very smaIIt

lattice sizeqL =10, 20, and 4Dand do not constitute a defi-

nite proof of the location of the critical point, as the authors

duly point out[11]. Below, we present a similar cumulant
study, but with larger lattice sizes.

We also calculated the relation between the value of th

probability distributionP(6-p) at either of the peaks of the
bimodal distribution,P,,,, and its value at the local mini-

e

Quch as the one studied here. The maximay,otiefine the

| -dependent coexistence ling;(k,L). In Fig. 6, we show
he dependence af, ony for several values of and for
k=0.02 andk=0.04, respectively. Whek=0.02, the maxi-
mum value ofug is very close to 2/3. However whek
=0.04, the maximum is very close to 0.61, consistent with
the proximity of an Ising-like critical point.

The finite-size scaling theory ofquilibrium first-order
phase transitions implies that the shift in the position of the
transition in a finite system of linear side with periodic

mum between the peakB,,,. For a first-order equilibrium

o . : . boundary conditions is inversely proportional to the system
phase transition, these quantities satisfy the relation y y Prop y

volume, L9 [18,20,22 (here the dimensiod=2). Although
there is no analogous scaling theory for the present nonequi-
librium system, we attempt here to use the same scaling re-
lation,

©)

Prnasc, exp(cL),
min

wherec is proportional to the equilibrium interface tension
between the two phases. If the relation is applied to the
present system, we would expectto be positive and de- ) - _
crease with increasing. Our results indicate that(k) is ~ Whereyz(K) is the transition value of the CO adsorption rate
positive only fork<0.03, suggesting that 0.82.<0.03. Y in the infiniteL limit. In Fig. 7, we ploty,(L) vs 1/L? for
These results corroborate again that the system has a firdt=20, 40, 60, 80, 100, 200, and 300 for several valuels of
order phase transition for sma&l However, they suggest a The error bars are calculated as the half-width of the peaks of
much lower value fork, than indicated by our other tech- theup vsy curves[19,20. As seen from the figure, the points
niques and the previous results by othg@d1]. We find this ~ fall very close to the straight line representing a weighted
result quite interesting and believe it may be due to severdeast-squares fit, yielding a good estimatéthin 10"%) of
reasons. Most obvious is the significant difficulty in locating Y2(K) for eachk whenL —c. Our resulty,=0.52573) for
and measuring the peaks, which are extremely narrow in k=0 is consistent with previous studies that giye
Perhaps more significant is the fact that this non-HamiltoniarF 0.525 601) [12] andy,=0.525 839) [23] for L —c°.
nonequilibrium system does not possess a well-defined sur- In Fig. 8, we show several points on the coexistence curve
face tension that could be associated with the parancdter between the low and high CO coverage phases. The coexist-
Eq. (5). This point will be further discussed in Sec. Ill B, ence curve is almost linear with only a slight curvature. By
where we also show that the cluster interfaces in this syster@xtrapolating a quadratic fit of the data ke-0.040 60, we
are much rougher than in conventional Hamiltonian systemsbtain y,=0.5423) in agreement with the previous result
As a result, we do not consider the method for determining/,=0.542 1210) for k. [11].

Ya(k,L) = ya(k) o< L72, (8)
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FIG. 6. Dependence of the fourth-order reduced cumulgran y, for (a) k=0.02 and(b) k=0.04. TheP(6cc) histograms indicate that
the minima ofu, correspond to the transitions from unimodal to bimodal distribution. The maximum between them gives the coexistence
point y,(k,L). The horizontal lines in the insets correspondite-2/3 (dashegl and ul*smgzo.el(dotted.

B. Metastability have left the metastable phase once its coverage reaches a

: : : . . certain cutoff valued... To avoid recrossing events back to

In this section, we calculate the time associated with th he metastable phase being mistaken for decay events, the
ggsva;ycfg rcT;]O\t/g?alO(\al\(hﬁ%@&cs-go;i[ja%itgrhriisneetict)stgi Zlgh cutoff is selected such that it is not too close to the meta-

ge p p \7d)s : b table coverage value. The statistics of the decay times are

dence on the CO pressure and the system size. In order to %alyzed fom=500 independent runs
this, we prepare the system with initial pressyrey,, such Since the value of,, that determines how far the initial
thaty; <y <¥2(K) [yw>Y(k)] and then suddenly change system is from the transition poiny,(k) is somewhat arbi-
such thatyiyz(kk)) [y<y2(K)]. Thenblthe |(rj1|t|al Iow(lrlgdh) trary, it is necessary to evaluate how the decay times depend
coverage phase becomes metastable and eventually decays,fpj; Figure 9a) indicates that, in the region of interest, the
the high(low) coverage phase. The system is considered to

Ll T T T T T T T T
0.550 —— . — T i»
0.540 — —
0.545
0.540
0.535— —
3 =
< 0535
= i ]
0.530 0.530— ]
0.525 i 7
0.525 1 1 1 1 | 1 1 | : |
0.520 L I | 1 | 1 | 1 | 1 0 0.01 0.02 0.03 0.04
o 0.0005 0.001 0.0015 0.002 0.0025 k
2

1L

FIG. 8. Some points of the coexistence curve, analogous to the
FIG. 7. Critical CO adsorption ratg(k,L), shown vs 112 for pressure vs temperature phase diagram for a fluid in equilibrium.
several values of the desorption rate The straight lines are The continuous line represents a quadratic fit to the data. The ver-
weighted least-squares fits, yielding the estimatg#) for L=oo. tical dashed line indicates the estim&te=0.039 from Ref[9].
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FIG. 10.(ry) as a function ofa) y,, with #-,=0.45, andb) d,

FIG. 9. (r,) as a function ofa) y,, with 6-.4=0.65, andb) 6,
¢ p> @) Yu co ab) beo with y,,=0.57; fork=0.02,L=100, and two different values gf

with y,,=0.475; fork=0.02,L=100, and two different values gf

average decay tme from the low to the high CO-coveragiCZHRERE 8 FERT 0T (08 e by

phase_(rp>, while being dependent on the f|_nal Pressyres .nucleation and growth of multiple droplets of the stable

fairly independent of the_ pressure at which the system '%hase. In contrast, Figs. 13 and 14 show that whehis

D e e 19 he system cecays by ruceston andgroh of sl
P . ; roplet of the stable phase, which eventually takes over the

() on tlje select.ed cutoff valuéeo. In Fig. 9b), we plot entire system. The probability distributions ef and 7,

(M) Vs 6o for different values ofk andy. Clearly, (m)  ghown in Figs. 15 and 16, respectively, also indicate clear

increases withfo, however there is a region where it is gjtferences between the statistics of the decay times near and

relatively weakly dependent on the cutoff. We choose to perfar from the coexistence line. Far from coexisteride’

form our measurements ¢6f,) at 6.,=0.65, well inside this

region. ] 5

Figure 10 indicates that the average decay times associ |- s

ated with the decontamination of the CO surfa¢s), i.e., J

the relaxation times from the high CO-coverage phase to the : B

low coverage phase behave in a similar way(tg. Figure

10(a) clearly indicates that, to an even higher degree than in

the poisoning proces$yy) is independent of,,. We choose

yw=0.57 for our calculations. Figure () indicates that, as

expected(ry) increases af., decreases, but there is a range

of values of the cutoff where the dependence is relatively -

small. In the following, we calculatérg) with 6;,=0.45, .

which lies in this region.

We define the quantity

A=ly=y,l, (9)

which measures how far the system is from the coexistence
curve and depends dnandL throughys,. In Figs. 11 and 12,
we present snapshot configurations obtained during the re- g, 11. Snapshot configurations obtained at diffetanevenly
laxation from the low to the high coverage phase and fromspacey times, after a sudden change pffrom y,,=0.45 toy

the high to the low coverage phase, respectively, whieris  =0.538>y,(k), i.e., A"L~200, fork=0.02 and.=100. Here and in
small, i.e., far from the transition. In Figs. 13 and 14, weFigs. 12, 13, and 14, the black dots represent lattice sites occupied
show snapshot configurations for a much larger valu&df by CO, while both adsorbed O atoms and empty lattice sites are
i.e., close to the transition. The difference in the decaywhite.

031603-6



DECAY OF METASTABLE PHASES IN A MODEL FOR.. PHYSICAL REVIEW E 71, 031603(2005

. SLTe W

R,

oo g el .
LR
&l L B+

o o I . ;
(4) (6)
FIG. 12. Snapshot configurations obtained at diffefanevenly FIG. 14. Snapshot configurations obtained at diffetanevenly
spaced times, after a sudden change pfirom y=0.65=y,, to y spacedl times, after a sudden change pffrom y=0.65=y,, to y
=0.5232y,(k), i.e., A"t~ 100, fork=0.02 andL=100. =0.5315<y,(k), i.e., A™t=~500, fork=0.02 andL=100.

smal), the decay times follow an approximately Gaussiangrowth of “droplets” inside which the order parameter is
distribution. In contrast, near the transition™! large), the close to its equilibrium value, and it is well described by the
distribution is approximately exponential. classic KIMA theory of phase transformatipt3—15. The

The statistics of the metastable lifetimes in the modelbasic assumption of this theory is that droplets of the stable
studied here are strikingly similar to those found in Hamil- phase nucleate in a Poisson process at alrpt unit vol-
tonian systems that decay toward thermodynamic equilibume. After nucleation, the droplet radius is assumed to grow
rium from a metastable phase associated witleguilibrium  with a constant speed, If the first droplet to nucleate grows
phase transition. Well-studied examples are metastable dec#gst enough to fill the system before another is likely to
in kinetic Ising[24—27 and lattice-gas mode[28,29 with nucleate, then it completes the phase transformation by
such applications as magnetism switching and submonolayéiself—a process known as single-drop(€D) decay. How-
adsorption. In the present paper, we will for simplicity referever, if the growth is slow, so that many droplets can nucle-
to this latter case as the “Hamiltonian” case, thus emphasizte within the time it would take a single droplet to fill the
ing the lack of a Hamiltonian and the consequent lack of a
concept of thermodynamic equilibrium for the system stud- O%——T—— T T — T T = T °
ied in the present paper. The metastable decay in such
Hamiltonian system occurs via nucleation and subsequen 0.03

o ‘ _
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FIG. 13. Snapshot configurations obtained at diffeanevenly FIG. 15. Plot of distributions of;, for k=0.02 andL =100, (a)
spaced times, after a sudden change pfirom y=0.45=y,, to y A~1=200 and(b) A~*=2000. Note the very different timescales in

=0.5338>y,(k), i.e., A1~ 2000, fork=0.02 andL=100. (a) and(b).
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0.06 —— T ' T ' | — however, easier to estimate it as given by the valudsafd
0.05 — - v that yieldr=1/2[24].
- @ § So far, the KIMA results discussed do not require a spe-
50'04 N ] cific dependence of the nucleation ratend growth velocity
£ 003 — v on the macroscopic control parameters, which for meta-
£ ombL N stable decay in Hamiltonian systems are the applied mag-
- . netic field H (or chemical potential or supersaturation for
001 7 lattice-gas mode)sand the temperatur@. In the present
0 model, the analogous quantities should be the distance from
0 500 1000 1500 2000

coexistenceA and the desorption rate Hamiltonian sys-
00— T T T T 1 T T T T tems are described by a free energy, and standard arguments

0.06 of droplet theory show that for not too strong fields,
0.05 (b) ~exg—-c(T)/(T|H|)], where c(T) is well approximated as
§0'04 proportional to the equilibrium interface tension between the
] metastable and equilibrium phases. For weak fields,

v «|H|—an effect that to a reasonable approximation can be
ignored compared to the exponential dependence (|
l.
|"|||||-||-|| bk oo | oo The present nonequilibrium system has no Hamiltonian
0 1x10° 2x10° 3x10° 4x10° 5x10° 6x10° 7x10°  and so no free-energy function. However, let us for the mo-
7, (MCSS) ment postulate that(A,k)~exd—-c(k)/A] for reasonably

small A, and thatv(A,k) depends comparatively weakly on
its parameters so that it can be taken as approximately con-
stant. Following the method of data analysis introduced in
Ref. [24], we then expect logarithmic plots ¢f,,) and(7y)

and ofr in the MD regime vs 1/A to be approximately
near. Furthermore, the general KIMA arguments given
%bove indicate that the lifetimes should be independeit of
in the MD regime and<L™2 in the SD regime.

FIG. 16. Plot of distributions of; for k=0.02 andL=100, (a)
A™1~100 and(b) A™t~500. Note the very different timescales in
(a) and(b).

system, the phase transformation will proceed via a larg
number of droplets that nucleate and grow in parallel—
process known as multidroplé¥D) decay. This simple ob-

servation can be turned into a formal scaling argument by Figure 17 shows log-linear plots ¢f.) and(ry vs A~
P

. . . - 1/3 . .
constructing the characteristic leng®=(v/1)"*, which is a for k=0.01 and different sizes. Similar plots were also ob-

measure of the average size to which a droplet will grow,_. _ o
before it touches another dropléResults are reviewed here tained fork=0.02(not shown. The plots clearly indicate that

only for d=2. Results for general can be found in, e.g., there is a regime, corresponding to smilf, where(r) is

Refs.[24,26] and references therejrif Ry>L, the system is independent of.. Figure 18 strongly indicates that whan*

in the SD regime, and the metastable lifetime is simply theiS large, the decay times are inversely proportional t?1/

average time between nucleation evemgg~ 1/(IL?). Since Only the data forl. =40 do not seem to follow this depen-

. : ; dence. We believe it is possible that 40 becomes smaller
the nucleation events constitute a Poisson procegsfol-

o ; Pt )
lows an exponential distribution, similar to the ones shownthan the critical droplet size for largs™ (incipient “coex

in Figs. 18b) and 1@&b) for the system discussed here. If, on istence regime,” see Ref24)).

- o . To further explore the applicability of the KIMA theory
the other handg, <L, thgn _the system 'S In the MD_reglme, and our postulate to the model, we next determine the dy-
and the metastable lifetime is obtained agp=Ry/v

=1/(v3)*3. Since the metastable decay in this case consistgamlc spinodalApsp that separates the stochastic and the
. eterministic regimes. We calculate the relative standard de-
of a large number of droplets that nucleate and grow inde

. L . viationr of Eq. (10), which is shown on a logarithmic scale
pendently,rMD follows a Gaussian d'St.”b.Ut'on with a stan- vs A7t in Fig. 19, where error bars are estimated by standard
dard deviation proportional td=,/L, similar to the ones error-propagation methods as
shown in Figs. 1) and 16a) for the system discussed here.

The SD regime with its exponential lifetime distribution is r n-1 .\
a subregion of a broadestochastic regimewhile the MD o = —( )
regime with its narrow Gaussian distribution is part of a
broaderdeterministic regimeThe relative standard deviation As can be seen, crosses over from the approximately linear

(11

of the lifetimes is defined by behavior expected from our postulate for smaif to r=1
s ) i for larger A™%. We take as our estimate fadvpgp the value

_ A =(n? {RO/L <1 inthe MD regime Ay, for which r=0.5. This crossover is determined for each

(1) 1 in the SD regime. value ofL from the crossing of a weighted least-squares fit to

(10) Inr in the linear region of Fig. 19 with the horizontal line
r=0.5. The resulting estimates are shown in Fig. 20 as; 4/
The limit between the SD and MD regimes is called thevs L on a logarithmic scale, with error bars estimated from
dynamic spinodalDSP and corresponds t®,~L. It is, those in Fig. 19 by standard error-propagation methods. The
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10 E T T T T T T T 3 10 E T T T T T T T 3
W ®) 1
10°E = 10" ! E
S w0'E 3 £F E
O 1 0~ f ;
v i 1 v ot L=40 T
0k 4 wF I
o — L=100 B E — L=100 E
C v 1 /Al/2 ] L v | /Al/7 4
10° . 10°E 3
S T TR R R S N S R R B
0 200 400 600 800 1000 0 50 100 150 200 250 300
-1 -1
A A

FIG. 17. Log-linear plot ofa) {7,) vs A~ L and(b) (74 vs A™%, shown fork=0.01 and different values &f. The solid inverted triangles
indicateA7}, for each value oL. Approximate data collapse is seen for! <A77,

numerical results are consistent with the analytical prediction While a direct analogue of the surface tension does not
based on our postulate, exist in the present system, the results described above
Ao 1/InL (12) strongly suggest that_ it obeys a decay mechanism very simi-
DSP ' lar to the one described by the standard KIJMA theory of
The asymptotid. dependence of the lifetime at the DSP, phase transformation by nucleation and growth, which pre-
analogously given by dicts well-defined single-droplet and multidroplet regimes. A
significant difference between our Fig. 17 and analogous fig-
(7)o LIApsp~L(InL), (13 ures showing the metastable lifetime for a Hamiltonian sys-
is illustrated in Fig. 21. For eadhthis lifetime was obtained tem vs inverse field or supersaturatiee, e.g, Fig. 2 of
by interpolation between the two closest field values brackRef. [24] and Fig. 2 of Ref[27]) is that here we see no
eting Ay, for which simulations had been performed. Themarked change in the slope of the curves at the DPT. One
uncertainty in the resulting estimate was obtained by stanpossible explanation is that the “effective surface tension” in
dard error propagation, taking the standard deviatiofirjn  the present case may decrease substantially with increasing

from Eq.(10) with r=1/2, and(7) from Fig. 17. A, in contrast to the situation in Hamiltonian systems.
1010 E T T T T T T 3 109 E T T T T T T I, T 3
E @ ] ) ]
107 E 10° <
g 1w'g ] 3
9 E E 9 E
s 0 1 = .
A C ] A ]
A v
o 10 E 3 B O L=40 3
£ ] n L=60) e
r ] - L=80 ]
C i — =100 -
10°F = v 1A, -
105 T | I | I | 1 | | 104 1 | 1 | 1 | I | I | |
0 200 400 600 800 1000 0 50 100 150 200 250 300
-1 -1
A A

FIG. 18. Log-linear plot of(a) L%(r,) vs A™ and (b) L%ry) vs A™, shown fork=0.01 and different values df. The solid inverted
triangles indicate\;7, for each value oL Approximate data collapse is seen > A7},
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0 200 400 0 50 100
Al Al

FIG. 19. The relative standard deviatiorof (a) (7,) and(b) (7y), shown on a logarithmic scale vs1 for k=0.01. The behavior of
crosses over from the approximate straight line expected from our postulate in the deterministic reginieindhe stochastic regime. The
solid lines are weighted least-squares fits to the data in the linear region.

The decay times increase gsapproaches the transition time toward the high CO-coverage phase,), becomes
line y,(k), however their behaviors depend on the directionmore evident as the desorption paramétdecreases, as can
of approach to the transition value, as can be seen in Fig. 22lso be seen in Fig. 22. The extreme case occurs vithen
In a previous work we have shown how this asymmetry carr0, where(7rq) =2, independently of the value of since in
be exploited to enhance the catalytic activity by subjectinghe high CO-coverage phase the surface then becomes irre-
the system to periodic variation of the external pressure witlversibly poisoned with CO, whereds,) remains finite and
periods related to the decay times in each direcftiid. dependent ory.

The asymmetry between the decay times when the system |n Fig. 22, it can be seen thdt,) and (7,) appear to
evolves to the low CO-coverage phasey), and the decay djverge at the same value gf At this point the system

2000 . —— I | 100
~ 1500 o 80
v <
5 = 60
=, 1000 n
<« vn' 40
~ 500 7
20
0 0
400
300 . o
e | <
=
€ 200 . &
= Ay
< 1 v
~ 100 — e
O o | 1 ] 0 A B | |
40 60 100 150 200 40 60 100 150 200
L L
FIG. 20. The estimates M4, for 1/Apgp for (a) poisoning and FIG. 21. (a) (rp)/L at 1/A1, and(b) (7g)/L at 1/Ay,, shown vs

(b) decontamination as obtained from Fig. 19 and analogous datd, on a logarithmic scale. The solid straight lines are weighted least-
shown vsL on a logarithmic scale. The solid lines are weighted squares fits. Excluding the points correspondingd. t240, the fig-
least-squares fits excluding the points corresponding=40. ures support the asymptotic behaviag)>L In L at the DSP.
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5

10 T T T T T

plays the role of an order parameter. Our results strongly

indicate, as also previously suggested by others, that the sys-
tem undergoes a first-order nonequilibrium phase transition

between the active and the CO poisoned phases. The coex-
istence curve terminates at a critical value of the desorption

rate. We also calculated several points on the coexistence
curve.

Next we calculated the system-size dependence of the de-
cay times of the metastable phases when the system is driven
into the CO poisoned phase from the active phase, and vice
versa. We found that near the coexistence curve the decay
times are inversely proportional to 1%, and the decay
mechanism consists of the nucleation and growth of a single
supercritical droplet of the stable phase. In contrast, far from
the coexistence curve, the decay times are independent of the
system size, and the decay proceeds by random nucleation of
many droplets of the stable phase that grow independently
and coalesce. These regimes are separated by a dynamic
spinodal that vanishes logarithmically with system size.
These results strongly suggest that our nonequilibrium, non-

FIG. 22. Decay times as functions pfvhen the system evolves  Hamiltonian system follows a decay mechanism very similar
toward the low CO-coverage regioftco=0.45, y,=0.55, left- g the one described by the classic KIMA theory of phase
pointing triangle and when it evolves toward the high CO- ansformation by nucleation and growth near a first-order
coverage regioiifc=0.65,y,,=0.475, right-pointing triangleor  eqyjilibrium phase transition, which predicts well-defined
k=0.01 andk=0.04, andL.=100. As discussed in the text, the di- gnq1e_droplet and multidroplet regimes. In the present far-
vergence is exponential in f-y,(k,L)|=1/A. from-equilibrium system, the desorption parameter and the

distance to the coexistence point play the roles of the tem-
spends, on average, the same amount of time in the low anskrature and the external field or supersaturation, respec-
high CO-coverage phases, and it agrees with the value fafvely. Very recently, indications of KIMA behavior have
the coexistence poiry,, calculated from the order-parameter also been observed in another non-Hamiltonian, nonequilib-

distribution in Sec. Il A. Since at this point the average de-rjum system: an ecological model of invasion by exotic spe-
cay time is of the order of FOMCSS, during the observation cjes [30]. We find quite exciting the strong similarity be-

time of 1 MCSS it is very probable that several transitionstween the dynamics of metastable decay in far-from-
occur between the two phases. These transitions are observgguilibrium, non-Hamiltonian ~ systems of  applied
in Fig. 3, where it can be seen that the probability distribu-importance, and the well-known behavior in systems that can
tion P(6co) is bimodal and quite symmetric, indicating that be described by a Hamiltonian.

(79 =(p) along the coexistence curve for finite

<t >

v A v A
A
11 1 1 111

SWV VV VVY V¥V

<> (MCSS)

10

107

E | . | N
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