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We study by kinetic Monte Carlo simulations the dynamic behavior of a Ziff-Gulari-Barshad model with CO
desorption for the reaction CO+O→CO2 on a catalytic surface. Finite-size scaling analysis of the fluctuations
and the fourth-order order-parameter cumulant show that below a critical CO desorption rate, the model
exhibits a nonequilibrium first-order phase transition between low and high CO coverage phases. We calculate
several points on the coexistence curve. We also measure the metastable lifetimes associated with the transition
from the low CO coverage phase to the high CO coverage phase, and vice versa. Our results indicate that the
transition process follows a mechanism very similar to the decay of metastable phases associated withequi-
librium first-order phase transitions and can be described by the classic Kolmogorov-Johnson-Mehl-Avrami
theory of phase transformation by nucleation and growth. In the present case, the desorption parameter plays
the role of temperature, and the distance to the coexistence curve plays the role of an external field or
supersaturation. We identify two distinct regimes, depending on whether the system is far from or close to the
coexistence curve, in which the statistical properties and the system-size dependence of the lifetimes are
different, corresponding to multidroplet or single-droplet decay, respectively. The crossover between the two
regimes approaches the coexistence curve logarithmically with system size, analogous to the behavior of the
crossover between multidroplet and single-droplet metastable decay near an equilibrium first-order phase
transition.
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I. INTRODUCTION

The study of phase transitions and critical phenomena in
nonequilibrium systems is a subject of great interest. In par-
ticular, the study of surface reaction models has attracted
considerable attentionf1g. These models not only exhibit
rich and complex behavior, but they can also explain a wide
range of experimental results associated with catalysis and
could be very useful for designing more efficient processes.
The potential applications of improved catalytic reactions are
a powerful reason to pursue this line of researchf2g. Unlike
the decay of metastable phases near first-order equilibrium
phase transitions, the decay of metastable phases near non-
equilibrium phase transitions still lacks a well-established
theoretical framework.

The Ziff, Gulari, and BarshadsZGBd model is a lattice-
gas adsorption-reaction model that describes some kinetic
aspects of the catalytic oxidation of carbon monoxide on a
crystal surfacef3g. The ZGB model assumes that the reaction
between CO and O2 on a surface proceeds according to the
Langmuir-Hinshelwood process,

COsgd + S→ COsad,

O2 + 2S→ 2Osad,

COsad + Osad → CO2sgd + 2S,

where S is an empty site on the surface, andsgd andsad refer
to the gas and adsorbed phase, respectively. The process is

controlled by a single parametery, which represents the
probability that the next molecule arriving at the surface is
CO, i.e., it is proportional to the partial pressure of CO. The
model exhibits two kinetic phase transitions, a continuous
one at y=y1 and a discontinuous one aty=y2, where y1
,y2. Wheny,y1, all the sites become occupied by oxygen,
the so-called oxygen-poisoned state. Ify.y2, all the sites
become occupied by CO molecules, the so-called CO-
poisoned state. Real systems do not possess an oxygen-
poisoned state because oxygen does not impede the adsorp-
tion of CO. However, transitions between states of low and
high CO coverageuCO swhereuCO is the fraction of surface
sites occupied by COd have been observed experimentally
f4,5g. At low temperatures, asy increases, there is a discon-
tinuous increase inuCO, accompanied by a discontinuous
drop in the CO2 production rate. Above a critical temperature
the discontinuities disappear, and the CO2 production de-
creases continuously. This type of behavior can be repro-
duced by modifying the ZGB model to include a CO desorp-
tion rate,k f6–9g, a model we for brevity will call the ZGB-k
model f10g. For this model, there is a distinction between
high and low CO-coverage phases only fork below a critical
value kc, while abovekc the CO coverage varies smoothly
with y. Thus, the transition valuey2 becomes a function ofk,
corresponding to a coexistence curvey2skd that terminates at
the critical pointy2skcd f11,12g. The ZGB-k model does not
have a totally poisoned CO state, and hysteresis is observed
in uCO asy is varied close toy2skd f10,11g. This hysteresis is
associated with well-defined metastable phases of the model.
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The main aim of this paper is to understand the dynamical
response of the model near the discontinuous transition. We
present an extensive finite-size scaling analysis of results
from kinetic Monte Carlo simulations that indicates, more
conclusively than previous studies, that the system undergoes
a first-order nonequilibrium phase transition along a coexist-
ence curve that terminates at a critical point. We calculate
several points on the coexistence curve. Next we measure the
lifetimes of the metastable phases associated with the decay
from the low shighd CO-coverage phase to the highslowd
coverage phase. We find that the statistics of the metastable
lifetimes are well described by the Kolmogorov-Johnson-
Mehl-Avrami sKJMAd f13–15g theory of phase transforma-
tion by nucleation and growth near a first-orderequilibrium
phase transition.

The outline of the paper is as follows. In Sec. II, we
define the model and describe the Monte Carlo simulation
techniques used. In Sec. III, we present and discuss the nu-
merical results obtained: in Sec. III A, we show how we
calculate the coexistence curve and present a finite-size scal-
ing analysis of the fluctuations and of the fourth-order cumu-
lant of the order parameter; in Sec. III B, we present the
measurements of the lifetimes of the metastable states asso-
ciated with the transition and show how their behavior is
described by the KJMA theory. Our conclusions are summa-
rized in Sec. IV.

II. MODEL AND SIMULATION

The ZGB model with desorption is simulated on a square
lattice of linear sizeL that represents the catalytic surface. A
Monte Carlo simulation generates a sequence of trials: CO or
O2 adsorption with probability 1−k and CO desorption with
probabilityk. In the case of adsorption, a CO or O2 molecule
is selected with probabilityy and 1−y, respectivelyf3,11g.
These probabilities are the relative impingement rates of
both molecules and are proportional to their partial pressures.
The algorithm works in the following way. A sitei is selected
at random. In the case of desorption, ifi is occupied by CO
the site is vacated and the trial ends, if not the trial also ends.
In the case of adsorption, if a CO molecule is selected it can
be adsorbed at the empty sitei if none of its nearest neigh-
bors are occupied by an O atom. Otherwise, one of the oc-
cupied O neighbors is selected at random and removed from
the surface, leavingi and the selected neighbor vacant. This
move simulates the CO+O→CO2 surface reaction follow-
ing the adsorption of CO. O2 molecules can be adsorbed only
if a pair of nearest-neighbor sites are vacant. If the adsorbed
molecule is selected to be O2, a nearest neighbor ofi, j , is
selected at random, and if it is occupied the trial ends. If both
i and j are empty, the trial proceeds, and the O2 molecule is
adsorbed and dissociates into two O atoms. If none of the
remaining neighbors ofi is occupied by a CO molecule, one
O atom is located ati, and if none of the neighbors ofj is
occupied by a CO molecule, then the other O is located atj .
If any neighbors ofi are occupied by a CO, then one is
selected at random to react with the O ati such that both sites
are vacated. The same reaction happens at sitej if any of its
neighbors are filled with a CO molecule. This process mim-

ics the CO+O→CO2 surface reaction following O2 adsorp-
tion. A schematic of this algorithm is shown in Fig. 1. We
emphasize that the ZGB model, both with and without CO
desorption, is an intrinsically nonequilibrium model that is
fully defined by these dynamic rules. In contrast to systems
considered in equilibrium thermodynamics, its properties are
not derived from a Hamiltonian. We shall return to this point
in Sec. III B.

For our simulations, we assume periodic boundary condi-
tions. The time unit is one Monte Carlo step per site
sMCSSd, in which each site, on average, is visited once. For
measurements of stationary quantities, the system was al-
lowed to reach stationarity before data were recorded for
analysis. Averages were taken over 103 independent simula-
tion runs.

III. RESULTS

We use a standard ternary phase diagram to plot the frac-
tion of sites occupied by CO molecules: the CO coverage,
uCO; the O coverage,uO; and the fraction of empty sites,uE.
In Fig. 2, we present a contour plot of a histogram based on
the projection of 106 MCSS onto the plane of the phase

FIG. 1. Schematic of the algorithm. See discussion in the
text.

FIG. 2. Contour plot of the projection of 106 MCSS of simula-
tion onto the ternary phase diagram fork=0.02,y=0.5332, andL
=100.
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diagram. For the chosen parameters and observation times,
the system undergoes several transitions between the low and
high CO-coverage phases. From the fact that the set of phase
points is nearly parallel to the lineuO/uE=1/2, it is evident
that the CO coverage gives more information about the ki-
netic phase transitions thanuO or uE.

A. Determination of the coexistence curve

We estimatePsuCOd, the probability distribution foruCO,
by recording the number of timesNi that the coverage fell in
the intervalsf0,ed ,fe ,2ed , . . . ,f1−e ,1g se=0.01d, such that
oiNi =N is the total number of MCSS. Then, the probability
that uCO has a value in the intervalfsi −1de , ied is Pi

=Ni /Ne, such that

E
0

1

PsuCOdduCO = o
i

Pie = 1. s1d

In Fig. 3, we showPsuCOd vs y. In the regionssbelow and
abovey2d where the histograms are unimodal, the system
consists of one single phase. For a very narrow range ofy,
the histograms are bimodal, indicating two distinct phases.
At the coexistence pointy2skd, the areas under both peaks are
equalf16,17g.

We define a measure of the fluctuations inuCO in an
L3L system in the standard way as

XL = L2skuCO
2 lL − kuCOlL

2d, s2d

where

kuCO
n lL =E

0

1

uCO
n PsuCOdduCO. s3d

We measureXL as a function ofy for a fixed value ofk and
several values ofL. At a first-order equilibrium phase transi-
tion, the order-parameter fluctuations increase with the sys-
tem size, such that the maximum value ofXL,Ld, whered is
the spatial dimension of the systemf17–20g. We will take the
same scaling behavior to indicate anonequilibrium first-
order transition.

In Fig. 4, we showXL vs y for four system sizes atk
=0.02. For the four values ofL used,XL displays a clear
peak, which moves and increases in height with increasingL.

In Fig. 5sad, we plot lnsXL
maxd vs lnsLd for several values of

k. A linear fit indicates a power-law divergence withL, such
that the maximum value scales asXL

max,Ld8 with d8
=1.96±0.02, 1.91±0.05, and 1.58±0.04 fork=0.02, 0.03,
and 0.04, respectively. A different method to extract the
power-law exponent, which has some advantage in eliminat-

FIG. 3. Order-parameter probability distribution,PsuCOd, shown
vs y for k=0.03 andL=100. The distribution for the value ofy
closest to the coexistence value is shown with a bold line.

FIG. 4. The order-parameter fluctuation measureXL, shown vsy
for k=0.02 and four system sizes. The dotted lines are guides to the
eye. The values ofXL have an error of approximately 5%.

FIG. 5. sad Plot of lnsXL
maxd vs lnsLd and sbd plot of

lnsXbL
max/XL

maxd / lnsbd with L=20 vs 1/ lnsbd, both for several values
of k and including all four system sizes.XL

max is the maximum value
of XL, taken from figures similar to Fig. 4. The straight lines are the
best linear fits to the data and giveXL

max,Ld8 with sad d8
=1.96±0.02, 1.91±0.05, and 1.58±0.04; andsbd d8=2.008±0.005,
2.006±0.008, and 1.52±0.04; fork=0.02, 0.03, and 0.04,
respectively.
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ing the effects of a nonsingular background termsas in XL

= f +gLd8 with f andg constantsd, is to consider

lnFXbL
max

XL
maxGY ln b = d8 + Os1/ln bd s4d

with L fixed at a relatively small valueshere,L=20d, andb
.1. For largeL andb, the correction term is proportional to
f / sg ln bd, so that the exponent can be estimated by plotting
the left-hand side of Eq.s4d vs 1/ lnb and extrapolating to
1/ ln b=0, as in Fig. 5sbd. The resulting estimates ared8
=2.008±0.005, 2.006±0.008, and 1.52±0.04 fork=0.02,
0.03, and 0.04, respectively.

These results indicate that the system undergoes a first-
order phase transition,d8<d=2, at y=y2skd, generating a
coexistence curve that terminates at a critical point 0.03
,kc,0.04. A previous estimate based on a study of the frac-
tal dimension of the interface between the two phases gives
0.039,kc,0.04 f9g. Another study, which estimateskcsLd
as the value ofk where the double-peaked histograms be-
come single-peaked, giveskcsL→`d=0.040 60f11g. How-
ever, from the known two-peaked shape of the order-
parameter distribution at the equilibrium Ising critical point
f21g, we believe that this method should yield a slight over-
estimate ofkc. Referencef11g also reports preliminary results
on the fourth-order cumulant of the CO coverage that are
consistent with an Ising-like critical point atkc=0.0406.
However, the cumulants were calculated only for very small
lattice sizessL=10, 20, and 40d and do not constitute a defi-
nite proof of the location of the critical point, as the authors
duly point out f11g. Below, we present a similar cumulant
study, but with larger lattice sizes.

We also calculated the relation between the value of the
probability distributionPsuCOd at either of the peaks of the
bimodal distribution,Pmax, and its value at the local mini-
mum between the peaks,Pmin. For a first-order equilibrium
phase transition, these quantities satisfy the relation

Pmax

Pmin
~ expscLd, s5d

wherec is proportional to the equilibrium interface tension
between the two phases. If the relation is applied to the
present system, we would expectc to be positive and de-
crease with increasingk. Our results indicate thatcskd is
positive only for k,0.03, suggesting that 0.02,kc,0.03.
These results corroborate again that the system has a first-
order phase transition for smallk. However, they suggest a
much lower value forkc than indicated by our other tech-
niques and the previous results by othersf9,11g. We find this
result quite interesting and believe it may be due to several
reasons. Most obvious is the significant difficulty in locating
and measuring the peaks, which are extremely narrow iny.
Perhaps more significant is the fact that this non-Hamiltonian
nonequilibrium system does not possess a well-defined sur-
face tension that could be associated with the parameterc in
Eq. s5d. This point will be further discussed in Sec. III B,
where we also show that the cluster interfaces in this system
are much rougher than in conventional Hamiltonian systems.
As a result, we do not consider the method for determining

kc, based on Eq.s5d, very accurate. The fact that different
techniques give different results is an indication of the diffi-
culties associated with locatingkc in this model, even for
relatively large systems.

A useful tool for detecting phase transitions in simulations
of finite equilibrium systems is the fourth-order reduced cu-
mulant of the order parameterf17,19,20g. ForuCO it takes the
form

uL = 1 −
m4

3m2
2 , s6d

where

mn = ŠsuCO − kuCOldn
‹ =E

0

1

suCO − kuCOldnPsuCOdduCO

s7d

is the nth central moment of the CO coverage. The equal-
area bimodal distribution corresponding to coexistence
yields a positive maximum for the cumulant vsy, flanked on
either side by negative minima and approaching zero far
away from the transition. Since the cumulant essentially is a
tool to determine the shape of the order-parameter distribu-
tion, it can also be used for nonequilibrium phase transitions,
such as the one studied here. The maxima ofuL define the
L-dependent coexistence line,y2sk,Ld. In Fig. 6, we show
the dependence ofuL on y for several values ofL and for
k=0.02 andk=0.04, respectively. Whenk=0.02, the maxi-
mum value ofuL is very close to 2/3. However whenk
=0.04, the maximum is very close to 0.61, consistent with
the proximity of an Ising-like critical point.

The finite-size scaling theory ofequilibrium first-order
phase transitions implies that the shift in the position of the
transition in a finite system of linear sizeL with periodic
boundary conditions is inversely proportional to the system
volume,Ld f18,20,22g shere the dimensiond=2d. Although
there is no analogous scaling theory for the present nonequi-
librium system, we attempt here to use the same scaling re-
lation,

y2sk,Ld − y2skd ~ L−2, s8d

wherey2skd is the transition value of the CO adsorption rate
y in the infinite-L limit. In Fig. 7, we ploty2sLd vs 1/L2 for
L=20, 40, 60, 80, 100, 200, and 300 for several values ofk.
The error bars are calculated as the half-width of the peaks of
theuL vs y curvesf19,20g. As seen from the figure, the points
fall very close to the straight line representing a weighted
least-squares fit, yielding a good estimateswithin 10−2%d of
y2skd for eachk when L→`. Our resulty2=0.5257s3d for
k=0 is consistent with previous studies that givey2
=0.525 60s1d f12g andy2=0.525 83s9d f23g for L→`.

In Fig. 8, we show several points on the coexistence curve
between the low and high CO coverage phases. The coexist-
ence curve is almost linear with only a slight curvature. By
extrapolating a quadratic fit of the data tok=0.040 60, we
obtain y2=0.542s3d in agreement with the previous result
y2=0.542 12s10d for kc f11g.
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B. Metastability

In this section, we calculate the time associated with the
decay from the lowshighd CO-coverage phase to the high
slowd CO-coverage phase,tp stdd, and determine its depen-
dence on the CO pressure and the system size. In order to do
this, we prepare the system with initial pressurey=yw such
thaty1,yw,y2skd fyw.y2skdg and then suddenly changey,
such thaty.y2skd fy,y2skdg. Then the initial lowshighd
coverage phase becomes metastable and eventually decays to
the highslowd coverage phase. The system is considered to

have left the metastable phase once its coverage reaches a
certain cutoff valueuCO

* . To avoid recrossing events back to
the metastable phase being mistaken for decay events, the
cutoff is selected such that it is not too close to the meta-
stable coverage value. The statistics of the decay times are
analyzed forn=500 independent runs.

Since the value ofyw that determines how far the initial
system is from the transition pointy2skd is somewhat arbi-
trary, it is necessary to evaluate how the decay times depend
on it. Figure 9sad indicates that, in the region of interest, the

FIG. 6. Dependence of the fourth-order reduced cumulantuL on y, for sad k=0.02 andsbd k=0.04. ThePsuCOd histograms indicate that
the minima ofuL correspond to the transitions from unimodal to bimodal distribution. The maximum between them gives the coexistence
point y2sk,Ld. The horizontal lines in the insets correspond touL=2/3 sdashedd anduIsing

* <0.61 sdottedd.

FIG. 7. Critical CO adsorption ratey2sk,Ld, shown vs 1/L2 for
several values of the desorption ratek. The straight lines are
weighted least-squares fits, yielding the estimatedy2skd for L=`.

FIG. 8. Some points of the coexistence curve, analogous to the
pressure vs temperature phase diagram for a fluid in equilibrium.
The continuous line represents a quadratic fit to the data. The ver-
tical dashed line indicates the estimatekc<0.039 from Ref.f9g.
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average decay time from the low to the high CO-coverage
phase,ktpl, while being dependent on the final pressurey, is
fairly independent of the pressure at which the system is
prepared,yw. In the following, we then takeyw=0.45 to cal-
culatetp. It is also necessary to evaluate the dependence of
ktpl on the selected cutoff valueuCO

* . In Fig. 9sbd, we plot
ktpl vs uCO

* for different values ofk and y. Clearly, ktpl
increases withuCO

* , however there is a region where it is
relatively weakly dependent on the cutoff. We choose to per-
form our measurements ofktpl at uCO

* =0.65, well inside this
region.

Figure 10 indicates that the average decay times associ-
ated with the decontamination of the CO surface,ktdl, i.e.,
the relaxation times from the high CO-coverage phase to the
low coverage phase behave in a similar way toktpl. Figure
10sad clearly indicates that, to an even higher degree than in
the poisoning process,ktdl is independent ofyw. We choose
yw=0.57 for our calculations. Figure 10sbd indicates that, as
expected,ktdl increases asuCO

* decreases, but there is a range
of values of the cutoff where the dependence is relatively
small. In the following, we calculatektdl with uCO

* =0.45,
which lies in this region.

We define the quantity

D = uy − y2u, s9d

which measures how far the system is from the coexistence
curve and depends onk andL throughy2. In Figs. 11 and 12,
we present snapshot configurations obtained during the re-
laxation from the low to the high coverage phase and from
the high to the low coverage phase, respectively, whenD−1 is
small, i.e., far from the transition. In Figs. 13 and 14, we
show snapshot configurations for a much larger value ofD−1,
i.e., close to the transition. The difference in the decay

mechanisms is evident from the figures. Figures 11 and 12
clearly suggest that whenD−1 is small, the system decays by
nucleation and growth of multiple droplets of the stable
phase. In contrast, Figs. 13 and 14 show that whenD−1 is
large, the system decays by nucleation and growth of a single
droplet of the stable phase, which eventually takes over the
entire system. The probability distributions oftp and td,
shown in Figs. 15 and 16, respectively, also indicate clear
differences between the statistics of the decay times near and
far from the coexistence line. Far from coexistencesD−1

FIG. 9. ktpl as a function ofsad yw with uCO
* =0.65, andsbd uCO

*

with yw=0.475; fork=0.02,L=100, and two different values ofy.

FIG. 10. ktdl as a function ofsad yw with uCO
* =0.45, andsbd uCO

*

with yw=0.57; fork=0.02,L=100, and two different values ofy.

FIG. 11. Snapshot configurations obtained at differentsunevenly
spacedd times, after a sudden change ofy from yw=0.45 to y
=0.538.y2skd, i.e.,D−1<200, fork=0.02 andL=100. Here and in
Figs. 12, 13, and 14, the black dots represent lattice sites occupied
by CO, while both adsorbed O atoms and empty lattice sites are
white.
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smalld, the decay times follow an approximately Gaussian
distribution. In contrast, near the transitionsD−1 larged, the
distribution is approximately exponential.

The statistics of the metastable lifetimes in the model
studied here are strikingly similar to those found in Hamil-
tonian systems that decay toward thermodynamic equilib-
rium from a metastable phase associated with anequilibrium
phase transition. Well-studied examples are metastable decay
in kinetic Ising f24–27g and lattice-gas modelsf28,29g with
such applications as magnetism switching and submonolayer
adsorption. In the present paper, we will for simplicity refer
to this latter case as the “Hamiltonian” case, thus emphasiz-
ing the lack of a Hamiltonian and the consequent lack of a
concept of thermodynamic equilibrium for the system stud-
ied in the present paper. The metastable decay in such a
Hamiltonian system occurs via nucleation and subsequent

growth of “droplets” inside which the order parameter is
close to its equilibrium value, and it is well described by the
classic KJMA theory of phase transformationf13–15g. The
basic assumption of this theory is that droplets of the stable
phase nucleate in a Poisson process at a rateI per unit vol-
ume. After nucleation, the droplet radius is assumed to grow
with a constant speed,v. If the first droplet to nucleate grows
fast enough to fill the system before another is likely to
nucleate, then it completes the phase transformation by
itself—a process known as single-dropletsSDd decay. How-
ever, if the growth is slow, so that many droplets can nucle-
ate within the time it would take a single droplet to fill the

FIG. 12. Snapshot configurations obtained at differentsunevenly
spacedd times, after a sudden change ofy from y=0.65=yw to y
=0.5232,y2skd, i.e., D−1<100, fork=0.02 andL=100.

FIG. 13. Snapshot configurations obtained at differentsunevenly
spacedd times, after a sudden change ofy from y=0.45=yw to y
=0.5338.y2skd, i.e., D−1<2000, fork=0.02 andL=100.

FIG. 14. Snapshot configurations obtained at differentsunevenly
spacedd times, after a sudden change ofy from y=0.65=yw to y
=0.5315,y2skd, i.e., D−1<500, fork=0.02 andL=100.

FIG. 15. Plot of distributions oftp for k=0.02 andL=100, sad
D−1<200 andsbd D−1<2000. Note the very different timescales in
sad and sbd.
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system, the phase transformation will proceed via a large
number of droplets that nucleate and grow in parallel—a
process known as multidropletsMDd decay. This simple ob-
servation can be turned into a formal scaling argument by
constructing the characteristic lengthR0=sv / Id1/3, which is a
measure of the average size to which a droplet will grow
before it touches another droplet.sResults are reviewed here
only for d=2. Results for generald can be found in, e.g.,
Refs.f24,26g and references therein.d If R0@L, the system is
in the SD regime, and the metastable lifetime is simply the
average time between nucleation events,tSD<1/sIL2d. Since
the nucleation events constitute a Poisson process,tSD fol-
lows an exponential distribution, similar to the ones shown
in Figs. 15sbd and 16sbd for the system discussed here. If, on
the other hand,R0!L, then the system is in the MD regime,
and the metastable lifetime is obtained astMD =R0/v
=1/sv2Id1/3. Since the metastable decay in this case consists
of a large number of droplets that nucleate and grow inde-
pendently,tMD follows a Gaussian distribution with a stan-
dard deviation proportional toR0/L, similar to the ones
shown in Figs. 15sad and 16sad for the system discussed here.

The SD regime with its exponential lifetime distribution is
a subregion of a broaderstochastic regime, while the MD
regime with its narrow Gaussian distribution is part of a
broaderdeterministic regime. The relative standard deviation
of the lifetimes is defined by

r =
Îkt2l − ktl2

ktl
< HR0/L , 1 in the MD regime

1 in the SD regime.
J

s10d

The limit between the SD and MD regimes is called the
dynamic spinodalsDSPd and corresponds toR0<L. It is,

however, easier to estimate it as given by the values ofI and
v that yield r =1/2 f24g.

So far, the KJMA results discussed do not require a spe-
cific dependence of the nucleation rateI and growth velocity
v on the macroscopic control parameters, which for meta-
stable decay in Hamiltonian systems are the applied mag-
netic field H sor chemical potential or supersaturation for
lattice-gas modelsd and the temperatureT. In the present
model, the analogous quantities should be the distance from
coexistenceD and the desorption ratek. Hamiltonian sys-
tems are described by a free energy, and standard arguments
of droplet theory show that for not too strong fields,I
,expf−csTd / sTuHudg, where csTd is well approximated as
proportional to the equilibrium interface tension between the
metastable and equilibrium phases. For weak fields,
v~ uHu—an effect that to a reasonable approximation can be
ignored compared to the exponential dependence on 1/uHu in
I.

The present nonequilibrium system has no Hamiltonian
and so no free-energy function. However, let us for the mo-
ment postulate thatIsD ,kd,expf−cskd /Dg for reasonably
small D, and thatvsD ,kd depends comparatively weakly on
its parameters so that it can be taken as approximately con-
stant. Following the method of data analysis introduced in
Ref. f24g, we then expect logarithmic plots ofktpl and ktdl
sand of r in the MD regimed vs 1/D to be approximately
linear. Furthermore, the general KJMA arguments given
above indicate that the lifetimes should be independent ofL
in the MD regime and~L−2 in the SD regime.

Figure 17 shows log-linear plots ofktpl and ktdl vs D−1

for k=0.01 and different sizes. Similar plots were also ob-
tained fork=0.02snot shownd. The plots clearly indicate that
there is a regime, corresponding to smallD−1, wherektpl is
independent ofL. Figure 18 strongly indicates that whenD−1

is large, the decay times are inversely proportional to 1/L2.
Only the data forL=40 do not seem to follow this depen-
dence. We believe it is possible thatL=40 becomes smaller
than the critical droplet size for largeD−1 sincipient “coex-
istence regime,” see Ref.f24gd.

To further explore the applicability of the KJMA theory
and our postulate to the model, we next determine the dy-
namic spinodal,DDSP, that separates the stochastic and the
deterministic regimes. We calculate the relative standard de-
viation r of Eq. s10d, which is shown on a logarithmic scale
vs D−1 in Fig. 19, where error bars are estimated by standard
error-propagation methods as

sr <
r

În − 1
S1 +

n − 1

n
r2D1/2

. s11d

As can be seen,r crosses over from the approximately linear
behavior expected from our postulate for smallD−1 to r <1
for larger D−1. We take as our estimate forDDSP the value
D1/2 for which r =0.5. This crossover is determined for each
value ofL from the crossing of a weighted least-squares fit to
ln r in the linear region of Fig. 19 with the horizontal line
r =0.5. The resulting estimates are shown in Fig. 20 as 1/D1/2
vs L on a logarithmic scale, with error bars estimated from
those in Fig. 19 by standard error-propagation methods. The

FIG. 16. Plot of distributions oftd for k=0.02 andL=100, sad
D−1<100 andsbd D−1<500. Note the very different timescales in
sad and sbd.
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numerical results are consistent with the analytical prediction
based on our postulate,

DDSP, 1/ln L. s12d

The asymptoticL dependence of the lifetime at the DSP,
analogously given by

ktl ~ L/DDSP, Lsln Ld, s13d

is illustrated in Fig. 21. For eachL this lifetime was obtained
by interpolation between the two closest field values brack-
eting D1/2, for which simulations had been performed. The
uncertainty in the resulting estimate was obtained by stan-
dard error propagation, taking the standard deviation inktl
from Eq. s10d with r =1/2, andktl from Fig. 17.

While a direct analogue of the surface tension does not
exist in the present system, the results described above
strongly suggest that it obeys a decay mechanism very simi-
lar to the one described by the standard KJMA theory of
phase transformation by nucleation and growth, which pre-
dicts well-defined single-droplet and multidroplet regimes. A
significant difference between our Fig. 17 and analogous fig-
ures showing the metastable lifetime for a Hamiltonian sys-
tem vs inverse field or supersaturationssee, e.g, Fig. 2 of
Ref. f24g and Fig. 2 of Ref.f27gd is that here we see no
marked change in the slope of the curves at the DPT. One
possible explanation is that the “effective surface tension” in
the present case may decrease substantially with increasing
D, in contrast to the situation in Hamiltonian systems.

FIG. 17. Log-linear plot ofsad ktpl vs D−1 andsbd ktdl vs D−1, shown fork=0.01 and different values ofL. The solid inverted triangles
indicateD1/2

−1 for each value ofL. Approximate data collapse is seen forD−1,D1/2
−1 .

FIG. 18. Log-linear plot ofsad L2ktpl vs D−1 and sbd L2ktdl vs D−1, shown fork=0.01 and different values ofL. The solid inverted
triangles indicateD1/2

−1 for each value ofL. Approximate data collapse is seen forD−1.D1/2
−1 .
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The decay times increase asy approaches the transition
line y2skd, however their behaviors depend on the direction
of approach to the transition value, as can be seen in Fig. 22.
In a previous work we have shown how this asymmetry can
be exploited to enhance the catalytic activity by subjecting
the system to periodic variation of the external pressure with
periods related to the decay times in each directionf10g.

The asymmetry between the decay times when the system
evolves to the low CO-coverage phase,ktdl, and the decay

time toward the high CO-coverage phase,ktpl, becomes
more evident as the desorption parameterk decreases, as can
also be seen in Fig. 22. The extreme case occurs whenk
=0, wherektdl=`, independently of the value ofy, since in
the high CO-coverage phase the surface then becomes irre-
versibly poisoned with CO, whereasktpl remains finite and
dependent ony.

In Fig. 22, it can be seen thatktdl and ktpl appear to
diverge at the same value ofy. At this point the system

FIG. 19. The relative standard deviationr of sad ktpl and sbd ktdl, shown on a logarithmic scale vsD−1 for k=0.01. The behavior ofr
crosses over from the approximate straight line expected from our postulate in the deterministic regime tor <1 in the stochastic regime. The
solid lines are weighted least-squares fits to the data in the linear region.

FIG. 20. The estimates 1/D1/2 for 1/DDSP for sad poisoning and
sbd decontamination as obtained from Fig. 19 and analogous data,
shown vsL on a logarithmic scale. The solid lines are weighted
least-squares fits excluding the points corresponding toL=40.

FIG. 21. sad ktpl /L at 1/D1/2 andsbd ktdl /L at 1/D1/2, shown vs
L on a logarithmic scale. The solid straight lines are weighted least-
squares fits. Excluding the points corresponding toL=40, the fig-
ures support the asymptotic behaviorktpl~L ln L at the DSP.
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spends, on average, the same amount of time in the low and
high CO-coverage phases, and it agrees with the value for
the coexistence pointy2, calculated from the order-parameter
distribution in Sec. III A. Since at this point the average de-
cay time is of the order of 104 MCSS, during the observation
time of 106 MCSS it is very probable that several transitions
occur between the two phases. These transitions are observed
in Fig. 3, where it can be seen that the probability distribu-
tion PsuCOd is bimodal and quite symmetric, indicating that
ktdl<ktpl along the coexistence curve for finiteL.

IV. CONCLUSIONS

We have investigated by kinetic Monte Carlo simulation
the dynamical behavior of a ZGB model with desorption
near the coexistence curve between the active and the CO
poisoned nonequilibrium phases. We perform an extensive
finite-size scaling analysis of the fluctuations and of the
fourth-order reduced cumulant of the CO coverage, which

plays the role of an order parameter. Our results strongly
indicate, as also previously suggested by others, that the sys-
tem undergoes a first-order nonequilibrium phase transition
between the active and the CO poisoned phases. The coex-
istence curve terminates at a critical value of the desorption
rate. We also calculated several points on the coexistence
curve.

Next we calculated the system-size dependence of the de-
cay times of the metastable phases when the system is driven
into the CO poisoned phase from the active phase, and vice
versa. We found that near the coexistence curve the decay
times are inversely proportional to 1/L2, and the decay
mechanism consists of the nucleation and growth of a single
supercritical droplet of the stable phase. In contrast, far from
the coexistence curve, the decay times are independent of the
system size, and the decay proceeds by random nucleation of
many droplets of the stable phase that grow independently
and coalesce. These regimes are separated by a dynamic
spinodal that vanishes logarithmically with system size.
These results strongly suggest that our nonequilibrium, non-
Hamiltonian system follows a decay mechanism very similar
to the one described by the classic KJMA theory of phase
transformation by nucleation and growth near a first-order
equilibrium phase transition, which predicts well-defined
single-droplet and multidroplet regimes. In the present far-
from-equilibrium system, the desorption parameter and the
distance to the coexistence point play the roles of the tem-
perature and the external field or supersaturation, respec-
tively. Very recently, indications of KJMA behavior have
also been observed in another non-Hamiltonian, nonequilib-
rium system: an ecological model of invasion by exotic spe-
cies f30g. We find quite exciting the strong similarity be-
tween the dynamics of metastable decay in far-from-
equilibrium, non-Hamiltonian systems of applied
importance, and the well-known behavior in systems that can
be described by a Hamiltonian.
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